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METHODS OF OPTICAL NAVIGATION*

William M. Owen, Jr.†

Optical navigation is the use of onboard imaging to aid in the determination of the spacecraft
trajectory and of the targets’ ephemerides. Opnav techniques provide a direct measurement
of the direction from a spacecraft to target bodies. Opnav data thus complement both ra-
diometric tracking data (for instance, Doppler and range) and the groundbased astrometry
which is used to determine the a priori ephemeris of the targets.
We present the geometry and camera models which form the mathematical basis for

optical navigation and some of the image processing techniques by which one can extract
the optical observables—that is, the sample and line coordinates of images—from pictures.

INTRODUCTION

Optical navigation (“opnav”)1 is the use of imaging data to aid in spacecraft navigation. In the typical case,
a camera on a spacecraft takes a picture of some nearby target body. The spacecraft’s attitude determination

system provides an estimate of the attitude of the camera during the exposure; star images, if present in the

picture, serve to improve the attitude knowledge. Then an accurate measurement of the image coordinates

of the target become in effect a measurement of the inertial direction from the camera to the target: a unit

vector, with no distance information.

A succession of opnav pictures or the presence of multiple targets within one picture can provide some
measurement of distance; pictures taken at right angles can provide a reliable position fix.2 Still, the essence
of opnav is that the information it provides is target-relative.

Groundbased astrometry, radar ranging, and other historical tracking data determine the heliocentric po-

sition and velocity of the target bodies. Radiometric tracking data (Doppler, range, and ΔDOR) alone are
sufficient to provide the heliocentric position and velocity of a spacecraft. If the target is sufficiently massive,

radiometric data will also be sensitive to the spacecraft’s position relative to the target, but there is no such

sensitivity in the case of comets or small asteroids. For these small bodies, only optical data (or its close

relative, altimetry) can provide a direct measure of the spacecraft’s position with respect to the target.

The practice of optical navigation consists of two quite different problems and a third problem closely

related to the first.

1) Given the position and velocity of the spacecraft and the target, the camera attitude, and the camera’s

optical properties, where should the image of the target appear within a picture? To solve this problem

requires little more than basic three-dimensional analytic geometry coupled with geometric optics.

2) Given a digital picture containing images of targets or stars, what are the measured coordinates of these

images? The solution to this second problem lies in the realm of image processing; one typically produces a

model of the expected brightness distribution and fits the model to the picture.

3) Even after the image processing is done and the measured coordinates are in hand, the work of the

opnav analyst is not complete. The measurements must be fed into the orbit determination filtering process.

One must therefore compute not only the measurement residuals—a repeat of the first problem— but also the
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partial derivatives of the computed measurements with respect to all the parameters of the OD process. The

partials are easily obtained by differentiating the geometry equations.

This paper treats all three problems.

Within this paper, scalar quantities appear in italics, vectors in boldface, and matrices in boldface sans-

serif. Special terms appear in slanted type at their first appearance in the text. Superscripts to vectors or

matrices indicate the coordinate system in which their components are expressed.

OPNAV GEOMETRY

The goal of the optical navigation prediction process is to determine the expected coordinates of the image

of some sort of target within a picture taken by a camera.

A target can be anything. In traditional opnav, targets typically are the coordinate centers of nearby Solar

System objects: planetary satellites, asteroids, comets, and occasionally the planets themselves. Targets

may also include features or “landmarks” on the surface of a body, even another spacecraft. Stars are also

considered targets, because it is important to measure their images too.

A camera is some device capable of producing a picture. In effect, it maps a direction in its own coordinate

system onto a point in the plane of the picture. Again in traditional opnav, the camera is carried on a space-

craft, and the pictures it acquires are used to navigate the spacecraft. There is, however, no need to assume a

spacecraft: the camera can be anywhere.

The problem of predicting the location of the image of a target within a picture therefore has three compo-

nents: determining the inertial direction from the camera to the target, determining the orientation (attitude) of

the camera with respect to inertial coordinates, and applying the camera mapping or projection to determine

the image coordinates corresponding to a given direction.

The equations presented here have their basis in photographic astrometry, a field which dates to the latter

part of the 19th century. König3 has provided a review of that field.

Inertial Direction to a Target

Because optical navigation uses images, and images are produced by photons emanating from a target, the

direction of interest is not the “actual” or geometric position vector but rather the apparent position vector,

the direction from which the photons appear to come. The formulation below follows standard astronomical

practice, as documented in the Explanatory Supplement to the Astronomical Almanac4 and elsewhere. The
calculations assume an inertial reference frame I: nonrotating, with an unaccelerated origin.

Targets within the Solar System. One finds the apparent vector as follows:

1) Compute the positionRI(t) and velocity ṘI
(t) of the camera at the time t corresponding to the midpoint

of the exposure. These vectors are referred to the barycenter of the Solar System.

2) Compute the position SI(t) of the target similarly.

3) The differenceG(t) = S(t)−R(t) is the geometric relative position. If the speed of light c were infinite,
G(t) would also represent the observed position.

4) Because c is not infinite, the camera sees the target not as it is during the exposure, but as it was at the
retarded time t′ = t − τ , where τ , the light time, is the time required for light to travel from the target to the
camera:

τ = |R(t) − S(t − τ)|/c. (1)

As τ appears on both sides of Eq. (1), this equation must be solved iteratively. Two iterations suffice.

5) The true position T(t) of the target, now corrected for light time, is

T(t) = R(t) − S(t − τ). (2)

2



6) If the camera were at rest relative to the Solar System barycenter, Eq. (1) would provide the direction

from which the camera detects the incoming light. Stellar aberration, however, shifts this direction toward

the velocity apex of the camera. The apparent position A(t) is found most easily by a vector addition:

A(t) = T(t) + |T(t)| [Ṙ(t)/c]. (3)

This equation represents the Newtonian formulation, which is sufficient for optical navigation purposes. A

formulation compatible with special relativity may be found in Stumpff.5

Stars. The formulation for stars is a bit simpler, as star catalogs already provide the equivalent of a true
position. Catalogs typically provide the right ascension α(tα) at some time tα, the declination δ(tδ) similarly,
and the proper motion components μα and μδ, which are dα/dt and dδ/dt respectively. Note that R.A.
is commonly measured not in degrees but in hours, minutes, and seconds “of time,” with 24h ≡ 360◦.
Furthermore, many catalogs provide not μα itself but rather μ

∗

α ≡ μα cos δ, typically measured in the same
units (e.g., arc seconds per year) as μδ. One must read each catalog’s documentation carefully. Currently the

HIPPARCOS catalog6 is the realization of the International Celestial Reference Frame at optical wavelengths.
Subsequent catalogs such as Tycho-2 or UCAC2, both reduced to HIPPARCOS, provide a denser, fainter set

of stars.7, 8

1a) For most stars, the proper motion may be considered constant. One therefore computes

α(t) = α(tα) + (t − tα)μα (4)

and similarly for δ(t). It is not uncommon for tα and tδ to be different. The angular coordinates, combined
with the distance d, yield the star’s position vector

SI(t) = d

(
cosα(t) cos δ(t)
sinα(t) cos δ(t)

sin δ(t)

)
(5)

relative to the barycenter of the Solar System. Note that catalogs often provide not a star’s distance but its

parallax π ≡ 1 parsec/d. If the distance is unknown, one should set it to some very large number.

1b) For some nearby stars with large proper motions, and for some stars very close to a celestial pole, the

above approximation can break down. A better approach takes the star’s space velocity VI to be constant,

yielding rectilinear motion:

SI(t) = SI(t0) + (t − t0)VI. (6)

This approach presumes that the star’s distance and radial velocity are known. Details are found in the

Explanatory Supplement4 or in section 1.2.8 of Volume 1 of the HIPPARCOS documentation.6

2) As light time is already included in the coordinates of the star, it suffices to form

T(t) = S(t) − R(t) (7)

and then account for stellar aberration by Eq. (3).

Camera Attitude

The second aspect of the optical navigation geometry problem is the determination of attitude of the cam-

era. Define a camera-fixed Cartesian coordinate system M -N -L such that the L-axis is the optical axis of
the camera, with +L pointing away from the camera toward the scene being imaged. TheM - and N -axes
are perpendicular to the optical axis. The directions of M and N are arbitrary; JPL usage (Figure 1) has
+M pointing to the left and +N up, from a vantage point behind the camera. This produces a right-handed
coordinate system C.

The transformation from inertial coordinates to camera coordinates is effected by a rotation matrix C. An

apparent vector AI, expressed in inertial coordinates, is transformed into camera coordinates to become the

vector AC by

AC = CAI. (8)
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Figure 1. A pinhole camera showing the gnomonic projection for a star.

This transformation does not change the direction in which the vector points; it merely changes the coordinate

system in which its components are expressed.

The goal is to find the full matrix C, not merely the direction of the optical axis (the third row of C). There

are many ways to proceed, some of them mission specific.

The simplest is to write the rotation as a sequence of three elementary rotations by Euler angles, such as

C = R3(φ)R1(90◦ − δ)R3(α + 90◦) (9)

or

C = R3(φ
′)R2(90◦ − δ)R3(α) (10)

with φ′ = φ + 90◦. The expression Ri(θ) denotes a rotation of the coordinate axes by angle θ about the ith
axis. For instance,

R1(θ) =

(
1 0 0
0 cos θ sin θ
0 − sin θ cos θ

)
. (11)

In Eqs. (9) and (10), α and δ are by construction the right ascension and declination of the optical axis (+L),
and φ or φ′ a twist angle.

Either of the preceding formulations is appropriate when the camera attitude is available from spacecraft

telemetry or when all three angles are controllable. Often, however, the camera has only two degrees of

freedom, not three: the spacecraft architecture or operating constraints force the camera to one possible ori-

entation given the pointing direction. That is, φ = f(α, δ). Usually there will exist some “azimuth/elevation”
coordinate system A in which the camera attitude is specified by two rotations. If the orientation of A with

respect to inertial coordinates is specified by a rotation matrix A, the camera attitude is then

C = R2(e)R3(a)A (12)

where a and e are the azimuth and elevation angles. These are found by rotating the desired pointing direction
L̂ from inertial coordinates into A: (

cos a sin e
sin a sin e

cos e

)
= A L̂

I
. (13)

Camera Projection

An ideal camera acts as if the lens were a point. Light rays from a target pass through that point, which

we take to be the origin of the camera coordinate system C, and continue in a straight line until they impinge

upon a detector, which lies in a focal plane at a distance f from the origin. This process forms a real image
on the detector. In this model, the line through the origin perpendicular to the detector defines the optical

axis, and f is the focal length of the camera.

The image of a target at apparent position AC (expressed in camera coordinates) appears on the detector,

inverted or “upside-down,” at coordinates (x, y). The simple geometry of the gnomonic projection (Figure 1)
shows that (

x
y

)
=

f

AC
3

(
AC

1

AC
2

)
. (14)
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Because the right hand side of Equation (14) involves ratios of the components of A, the magnitude of A is
irrelevant. The units of x and y are the same as those of f , typically millimeters. Note that the x- and y-axes,
used for measuring image coordinates, are by convention antiparallel to the M - and N -axes of the camera
body, in order to avoid introducing minus signs into the model.

Real cameras, whether by design or throughmisalignment, are not ideal. The breakdown of the small-angle

approximation sin θ ≈ tan θ ≈ θ introduces aberrations into an optical system. The details of geometrical
optics are beyond the scope of this paper; readers are referred to textbooks such as Schroeder’s Astronomical
Optics9 or Jenkins andWhite’s Fundamentals of Optics.10 For optical navigation purposes, what is important
is that navigators be able to model the effects of imperfect optical systems on the locations of images. The

three dominant terms arise from cubic radial distortion (one of the five third-order aberrations) and tip and

tilt misalignments.

Radial distortion displaces images radially, toward or away from the optical axis, by an amount proportional

to the cube of the distance from the optical axis. The displacement is resolved into x and y components, giving(
Δx
Δy

)
= ε1

(
xr2

yr2

)
(15)

where of course r2 ≡ x2 + y2. The coefficient ε1 yields pincushion distortion or barrel distortion according
to whether it is positive or negative.

Tip and tilt terms arise when the detector is not perpendicular to the optical axis. The part of the detector

which is further from the pinhole has in effect a longer focal length than nominal; the part which is closer

seems to have a shorter focal length. The consequence is that the image of a square target is distorted into a

trapezoid. There are two terms, as the misalignment has two degrees of freedom:(
Δx
Δy

)
= ε2

(
xy
y2

)
+ ε3

(
x2

xy

)
. (16)

These three terms combine to give an expression for the corrected image locations (x′, y′):

(
x′

y′

)
=

(
x
y

)
+

(
xr2 xy x2

yr2 y2 xy

) (
ε1
ε2
ε3

)
. (17)

The other third-order aberrations—spherical aberration, coma, astigmatism, and curvature of field—affect

the shape of an image but not directly its position. Insofar as the image centerfinding process is insensitive
to changes in the appearance of the image, these aberrations do not affect the opnav results. If however the

image centers determined by the software do change systematically across the field of view, these systematic

changes can often be absorbed in the camera calibration.

Transformation Into Pixel Coordinates

The coordinates (x′, y′) have units of length. What we measure in a picture are the pixel coordinates. A
digital picture contains a rectangular array of numbers, each of which is a pixel (the term is a contraction of

“picture element”). Nomenclature differs: the horizontal coordinate is referred to as the column, sample or
(confusingly) the pixel coordinate, while the vertical direction is the row or line coordinate. (The “line” and

“sample” terminology refers to TV cameras, which would sample the picture while doing line-by-line scans.)

The first column is displayed at the left side of the picture, but there is no unanimity about the first line: some

systems display it at the top of the picture, others at the bottom. The math is the same either way. Similarly,

there is no agreement as to whether the first pixel has coordinates (0, 0) or (1, 1).

A pixel can also be thought of as a quadrilateral area on the detector. In the former sense, pixel coordinates

must be integers; in the latter sense, pixel coordinates are continuous. We use the same terminology in either

case, and the context determines which interpretation holds. This subsection treats pixels as a continuous

coordinate system.
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Charge-coupled devices, active pixel sensors, and other silicon-based detectors have much greater geomet-

ric stability than the Vidicon television cameras used through Voyager. A fairly simple linear transformation

suffices to transform (x, y) into sample s and line l:(
s
l

)
=

(
Kx Kxy

Kyx Ky

)(
x′

y′

)
+

(
s0

l0

)
. (18)

The matrix K contains the reciprocal of the pixel dimensions; its components are typically measured in

pixels/mm. For an ideal detector with square pixels, Kx = Ky and the off-diagonal terms are zero. If the

pixels are rectangular, Kx �= Ky; if they are not rectangular, Kxy �= −Kyx. Notice that there can be a

rotation implicit in K as well. The last term in Eq. (18) contains the (s, l) coordinates of the optical axis,
where by definition x = y = 0.

It is clear that not all the parameters of the camera model are independent. What is actually measured is

the pixel scale or the angular size of a pixel. Increasing the focal length or decreasing the physical size of the
pixels will have the same effect: one pixel will subtend a smaller angle. One can combine Eqs. (14) and (18),

ignoring distortion, to derive the pixel scale Ss in the sample direction,

Ss = Kx/f radians/pixel, (19)

and similarly for the pixel scale in the line direction,Sl. One cannot in general determine f andKx separately

only from image analysis; one needs additional information, such as the measured size of a pixel.

Similarly, a rotation implicit in the terms ofK is effectively the same as a rotation of the camera body itself.

To put it anotherway, if an image appears rotated, one cannot tell whether the error is in the construction of the

camera (in K) or in the camera attitude (in C). It is common practice to holdKx fixed at the manufacturer’s

nominal value for the dimension of a pixel, and to holdKxy fixed at zero. Then one can estimate f to account
for overall variations in scale, Ky to determine the aspect ratio of the pixel grid, and Kyx to find the angle

between the sample and line axes.

If the optical train contains an odd number of mirrors, the resulting picture will be a mirror image. One

can model this reflection by changing the sign of eitherKx orKy .

Camera Calibration

The preceding paragraph alludes to the necessity of determining the parameters of the camera model

through calibration. Standard practice is to image a dense star cluster in flight or a special calibration target

in the lab. The known coordinates of the stars or of the fiducial points on the calibration target provide a truth

model. Comparing the actual image locations to the predicted ones yields the camera parameters through a

least-squares adjustment. One obtains better results by taking many pictures, moving the target in the field of

view, for then the differential motion of the images relative to one another as a function of (s, l) can provide
distortion terms even when the characteristics of the target are not perfectly known. This is the essence of the

“overlapping plate method,” in which even uncatalogued stars can contribute to the camera model.11

The overlapping plate method as implemented at JPL uses the U-D factorized sequential filter,12 with
corrections to the right ascension and declination of each object treated as uncorrelated stochastic parameters.

Three camera pointing angles for each picture and the other camera parameters are estimated as well.13

DIGITAL PICTURES

The data used by optical navigation consist of digital pictures as opposed to analog pictures obtained on

film or photographic plates. A digital picture is an array of data numbers or “DN values,” each of which is
intended to measure the amount of light falling on a specific region of a detector (a pixel) at the focal plane

of a camera. The actual DN values differ from the ideal due to various kinds of noise. This section describes

these noise sources and presents techniques for manipulating digital pictures so that the real work of optical

navigation, the image processing, can be more reliable.
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Signal in a Pixel

Incoming light has a specific intensity I(α, δ, ν, t) which is a function of direction (α, δ), frequency ν and
time t. The specific intensity can be measured in photons (or joules) m−2 sr−1 Hz−1 s−1. The camera itself

introduces a further frequency-dependent attenuation F (ν), largely because of a filter.

Modern detectors14 convert some fraction of the incident photons into photoelectrons. For instance, the
silicon in CCD detectors absorbs light, and the energy of the photons lifts electrons into a conduction band,

whence they can be measured. This fraction, the quantum efficiency, can also vary with wavelength; call it
Q(ν).

The measured signal S(s, l) in a pixel is thus the incident intensity, as modulated by the camera and
detected in the focal plane, integrated over frequency, over the solid angle Ω subtended by that pixel, and
over time, and converted to a number of photoelectrons:

S(s, l) = A

∫∫∫
I(α, δ, ν, t)F (ν)Q(ν) dν dΩ dt (20)

where A is the aperture of the camera. Note that S as written above is measured in electrons.

The DN value has one component directly proportional to S; it is typical to speak of the gain g of the
analog-to-digital converter in terms of electrons per DN. There is also a positive bias b added, ideally a
constant bias, to avoid having negative voltages emanating from the detector. Thus

DN(s, l) = S(s, l)/g + b. (21)

Noise in a Pixel

The measured DN values are subject to several kinds of error, or noise, introduced at various steps. The

following is not an exhaustive list:

1) Shot noise or photon noise arises because the flux of photons is discrete, not continuous, and there-

fore follows a Poisson distribution. The standard deviation is therefore the square root of the number S of
photoelectrons. In terms of DN, the shot noiseNs is

Ns(s, l) =
√

S/g ≈
√

(DN − b)/g. (22)

2) Read noise Nr is introduced during the measurement of the voltage produced by the photoelectrons.

This is a property of the detector electronics and is independent of the signal. It can be measured either in

electrons or in DN.

3) Dark current or thermal noise Nd is the spontaneous production of electrons within the detector, even in

the absence of light. These are of course indistinguishable from “real” photoelectrons. They obey the same

Poisson statistics, and the effect is to add a constant signal with its own contribution to the noise.

4) Fixed pattern noise Nf is a systematic variability in dark current, as a function of (s, l). Blemishes in
the detector or damage from radiation can cause certain pixels to be “hot,” producing far more DN/s than

normal. Again, although the average value in a pixel can be obtained through calibration, this average value

is also subject to Poisson statistics, so that even after calibration the amount of picture-to-picture variability

in a given hot pixel remains noisier than otherwise.

5) Quantization noise Nq is the inevitable result of converting a continuous quantity (the voltage from

the detector) into the integer DN values. Whether the conversion is done by rounding or by truncating, it

introduces a noise of 1/12 DN.

The total noise N in a pixel is the RSS of all these contributing noise sources:

N2 = N2
s + N2

r + N2
d + N2

f + N2
q . (23)
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The signal-to-noise ratio S/N is exactly what the term says: the “signal” S arising only from photons,
divided by the total noise. An empirical determination takes the difference in DN between the brightest pixel

and neighboring “dark sky” to be the signal, and the standard deviation of the sky to be the noise. Images with

S/N > 3 are almost always usable; images with S/N between 2 and 3 are sometimes good and sometimes
not.

Other Error Sources

Not a statistical noise source but still a consideration, charged particles or high-energy photons can impinge

on the detector during an exposure. These will ionize some of the atoms in the detector and produce free

electrons. The signal they produce varies with the angle of incidence: at normal incidence, a “cosmic ray hit”

looks much like a star image, but at near grazing incidence there will be a long trail. The best way to combat

cosmic rays is to take two pictures of the same scene; comparing these pictures will reveal their differences,

which are presumably the effects of cosmic rays.

Pixel-to-pixel variations in sensitivity, while not strictly “noise,” cause an uncalibrated picture of a uni-

formly bright target to be more variable than otherwise. This effect can be ameliorated with the use of flat

fields, described below.

Row-to-row or column-to-column variations in physical size can arise during manufacture. These effects,

if present, can affect opnav results: a geometric calibration ignoring this variation will produce only an

average pixel scale, but the truth may be that most columns are slightly wider than this and every nth column
is significantly narrower. The use of an average pixel scale would thus produce systematically wrong s
coordinates. The same consideration of course also applies to the height of rows. This error usually amounts

to at most a small fraction of a pixel.

Flat Fielding

It is customary, but not always necessary, to correct a raw picture for the pixel-to-pixel variations in sensi-

tivity, dark current, and fixed pattern noise.15 This process is routinely done for photometric work, where it is
important to measure the contribution of the target to the DN as accurately as possible. For positional work,

raw and “flattened” (photometrically calibrated) pictures usually give (s, l) measurements which differ very
little. The flattening process requires special calibration frames:

1) Take a set of “bias” or zero-second exposures. Combine them, usually by finding the median value of

each pixel, to produce as master bias picture B.

2) Take a set of “flat” exposures of a uniformly illuminated featureless scene, with the exposure times such

that the average DN level is between 1/2 and 3/4 of its maximum value. Combine them as above to produce

a master flat picture F.

3) If the camera has significant thermal noise (dark current), take a set of “dark” exposures: allow the chip

to accumulate charge, but do not open the shutter. Combine these to produce a master dark pictureD.

4) Remove the bias from the master dark to produce an adjusted master dark D
′. This operation is done

one pixel at a time:

D′

i,j = Di,j − Bi,j . (24)

5) Remove the bias and dark current from the master flat. If the exposure durations of the flat and dark

frames are tF and tD respectively, create the adjusted master flat F
′ pixel by pixel:

F ′

i,j = Fi,j − Bi,j − (tF/tD)D′

i,j . (25)

6) The raw picture P, with exposure duration tP, is then flattened to produce P
′:

P ′

i,j =
[
Pi,j − Bi,j − (tP/tD)D′

i,j

] (〈F′〉/F ′

i,j

)
(26)

where 〈F′〉 is the mean of all pixel values in F
′.
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Background Removal

If flat, bias and dark pictures are not available, one can often remove the background from a picture heuris-

tically. Many opnav pictures contain mostly dark sky, with one or two small targets and a scattering of stars.

One can determine the average DN value of sky pixels and subtract that value from every pixel. The “aver-

age” here can be the arithmetic mean or the median, but one must take care not to include cosmic ray hits,

hot pixels, or real star images.

If the background is not constant, perhaps due to scattered light from a target outside the field of view, one

can fit some polynomial function to the sky pixels. A product of Legendre polynomials works well.

As a last resort, one can take many pictures, and for each pixel find its median value and subtract it in each

picture. This can work if the camera attitude changes between pictures. As long as every pixel sees sky more

often than not, the median value will be a sky pixel. This process can also remove the effects of hot pixels.

IMAGE PROCESSING

The discipline of image processing or image analysis consists of extracting the (s, l) coordinates of an
image of a target within a picture. A variety of techniques16, 17 can be brought to bear on the problem, but all of
them involve at the most basic level fitting a model of the brightness in each pixel to the measured brightness

array. There are many centerfinding techniques, but most of them fall into one of two general categories:

correlating the actual image to a pixelated model image, and solving for the parameters of a continuous

model of the brightness. One technique which does not fit neatly into either camp is limb scanning, in which

points on the limb or apparent “edge” of a body are found through correlation and then the center is found

by fitting a limb profile to these points.

Centerfinding by Correlation

LetD be a d×d array of observed DN values in a portion of a picture which presumably contains an image
of a target. Let P be a p× p array of predicted DN values. The predicted image location (sp, lp) is known by
construction. The task of correlation is to locate the brightness pattern in P within D.

We note that this technique does not depend on the method of constructing P. The predicted array could

be a pixelated point-spread function if the image is a star. It could be a synthetic image of an entire celestial
body, computed pixel by pixel using the known geometry and appropriate reflectance laws. It could be a

small patch of terrain on a much larger body. The correlation technique remains the same, even thoughP can

represent quite different things.

Define the correlation array ρ(Δs, Δl) as the sum of the products of the suitably normalized arraysD′ and

P
′, with P

′ shifted by integer amountsΔs andΔl relative to D
′:

ρ(Δs, Δl) =
∑

i

∑
j

P ′

i,jD
′

i+Δs,j+Δl (27)

where the sum is carried out over only those elements which lie within the bounds of both arrays. In practice,

one prefers that D (typically a subset of a picture) be large enough that P will completely overlap it for all

plausible values ofΔs andΔl.

The normalization forD and P makes their common portion zero mean and unit standard deviation. Find
the arithmetic mean of all the pertinent elements in each array and subtract it from each element. Then find

the RSS of these elements, and divide each element by it.

In practice, the normalization is done after the double summation, and Eq. (27) is evaluated using the
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unnormalized arrays. Compute

md =
∑

Di+Δs,j+Δl, (28)

sd =
∑

D2
i+Δs,j+Δl, (29)

mp =
∑

Pi,j , (30)

sp =
∑

P 2
i,j , (31)

r =
∑

Di+Δs,j+Δl Pi,j , (32)

and then

ρ(Δs, Δl) =
Nr − md mp√

(Nsd − m2
d)(Nsp − m2

p)
(33)

where N is the number of pixels involved in the summation.

The resulting value of ρ will lie between−1 and+1, thanks to the normalization; a value of+1 indicates a
perfect correlation between the two arrays. The value of (Δs, Δl) for which ρ is a maximum gives the offset
in sample and line between the assumed or nominal image location and the location of the peak correlation.

Subpixel accuracy can then be achieved by interpolating the array ρ(Δs, Δl). One easy method uses a
parabolic fit. Let

ρ0 = ρ(Δs, Δl); (34)

ρ− = ρ(Δs − 1, Δl); (35)

ρ+ = ρ(Δs + 1, Δl). (36)

and fit a parabola y = ax2 + bx+ c through the three points (−1, ρ−), (0, ρ0) and (+1, ρ+). By construction
ρ0 is the largest of the three correlation values, so the parabola will open downward (a < 0), and the x
coordinate of the vertex yields the interpolated sample coordinate of the correlation peak. A little algebra

gives the desired result:

x = 2
ρ+ + ρ− − 2ρ0

ρ+ − ρ−
. (37)

Similar equations, using the values above and below the peak response, yield the interpolated line coordinate.

The above technique is often called spatial correlation, as the shifting is done in pixel coordinates. An
alternative is frequency correlation using Fast Fourier Transforms of the two arrays. The methods are math-

ematically equivalent. The FFT is generally preferred if the shift between P and D can be large, but if the a
priori image location is not far off the mark, the spacial correlation works just as well.

Centerfinding by Analytic Function Fitting

The second broad class of centerfinding techniques involves fitting some sort of analytic brightness function

to the DN array. Each DN value is an observation, and a least-squares solution determines the values of the

parameters of the fitting function. As the fitting function is not linear, the process is iterative.

The brightness function is a surface density, measured in units of DN per square pixel. The observed DN

in a pixel is obtained from photoelectrons generated throughout the light-sensitive or active region of that
pixel (often, but not always, the entire area of the pixel). The modeled DN must therefore be the integral of

the brightness function over the active region.
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One simple example is the two-dimensional Gaussian. The brightness function is

B(s, l) =
h

2π
exp

(
− (s − sc)

2 + (l − lc)
2

2σ2

)
+ b (38)

≡ h N

(
s − sc

σ

)
N

(
l − lc

σ

)
+ b

≡ h N(ξ(s))N(η(l)) + b. (39)

Here (sc, lc) are the coordinates of the peak of the Gaussian, σ is the standard deviation in pixels, h is the
amplitude in DN, and b is a constant background in DN. (It is easy enough to make b a function of position
as well.) In the last two expressionsN(z) is the normal probability distribution function, with zero mean and
unit standard deviation; the functions ξ(s) and η(l) convert s and l into units of standard deviations away
from the mean.

The modeled DN is the integral of the brightness function. If the active region encompasses the entire

pixel,

DN(s, l) =

∫ s+1/2

x=s−1/2

∫ l+1/2

y=l−1/2

B(x, y) dy dx

= h
[
erf(ξ(s + 1

2
)) − erf(ξ(s − 1

2
))

] [
erf(η(l + 1

2
)) − erf(η(l − 1

2
))

]
+ b. (40)

Note that Eq. (40) assumes that integer values of s and l are located at the center of the pixel. Other definitions
are possible, in which case the limits of the integrals must change. Clearly the limits must also change if the

active area is less than the whole pixel.

The fitting process is straightforward. The model parameters are {sc, lc, h, b, σ}. Begin with their a priori
values, perhaps crudely calculated from the image. Use Eq. (40) to calculate the expected DN values in

each pixel of a subset of the picture large enough to contain the entire image plus some margin on all sides.

Compute the partial derivatives of DN(s, l) with respect to the solution parameters and form the residuals
to construct each equation of condition. Apply a data weight according to the expected noise (in DN), and

feed the resulting weighted equation into a least squares algorithm. Iterate, possibly taking partial steps, until

convergence is achieved. We have found it useful to hold σ fixed during the first few iterations, then add it to
the solution set once (sc, lc) have stabilized.

Another widely used point-spread function is the Lorentzian function

B(s, l) =
h

1 + (r/r0)2
+ b, (41)

where r2 ≡ (s − sc)
2 + (l − lc)

2, r0 is evidently the half width at half maximum of the PSF, and h and b
are as before. This function has the advantage that its integral is analytic, even when it is convolved with a

line segment to produce a linearly smeared or trailed PSF. The equations for the “smear model” appear in

Reference 17 and need not be repeated here.

The Lorentzian function is but a special case of the more general Moffat function,18 in which the denomi-
nator is raised to some arbitrary power. This too is integrable if the exponent is an integer.

Experience has shown that the final values of (sc, lc) are not very sensitive to the choice of a reasonable
fitting function.

Limb Scanning

Targets whose images span more than a few pixels have historically been analyzed using a limb scanning

technique.16 Originally developed because of computer speed andmemory limitations, this technique remains
in wide use.

The formulation below assumes that the target is a triaxial ellipsoid. Define a body-fixed coordinate system

B aligned with the principal axes of the ellipsoid, with the z-axis being the axis of rotation and the prime

11



Figure 2. The orientation of a triaxial ellipsoid.

meridian lying in the +x-z half-plane (Figure 2). The rotation B from inertial coordinates to body-fixed

coordinates is conventionally4

B = R3(W )R1(90◦ − δ)R3(α + 90◦) (42)

where α and δ are the right ascension and declination of the body’s z-axis and W is a rotation angle. All

three angles may be functions of time; in the case of uniform rotation,

W (t) = W0 + ω(t − t0) (43)

while α and δ remain constant.

The equation of the ellipsoid, in body-fixed coordinates, is

x2

a2
+

y2

b2
+

z2

c2
= 1 (44)

where a, b and c are the semiaxes of the ellipsoid. We can rewrite Eq. (44) in terms of vectors. Let p be the
vector from the center of the body to a surface point. Define a “shape matrix” S, in body-fixed coordinates,

by

S ≡
⎛
⎝1/a 0 0

0 1/b 0
0 0 1/c

⎞
⎠ (45)

and define its square,

Q ≡ S
T
S =

⎛
⎝1/a2 0 0

0 1/b2 0
0 0 1/c2

⎞
⎠ . (46)

Then Eq. (44) becomes

(S p)T (S p) = pT Qp = 1. (47)
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The normal n to the surface is found from the gradient of Eq. (44); in body-fixed coordinates,

n =

⎛
⎝x/a2

y/b2

z/c2

⎞
⎠ = Q p. (48)

(We suppress an unnecessary factor of 2; the direction of p is all that matters.)

The limb of a body is the set of points which, when projected into an image, form the boundary of the

image. The surface at these points is always tangent to a line joining the point to the camera; in other words,

the direction to the camera is perpendicular to the surface normal. This is a necessary condition, but only for

convex bodies is it a sufficient condition. If A is the vector from the camera to the center of the body, then
the limb is the set of points satisfying

(A+ p) · n = 0. (49)

If we substitute Eq. (48) for n, this becomes

AT
Q p = −1, (50)

which is the equation of a plane.

Figure 3. A scan vector shown on a picture of an ellipsoid.

The limb scanning process (Figure 3) involves examining the actual and predicted brightness levels along

a scan line in the picture. This is a ray, emanating from a scan center C at some scan angle ψ. The scan

13



center need not correspond to the actual or predicted center of the body. In camera coordinates, the scan

center vector is

C =

⎛
⎝x0

y0

f

⎞
⎠ . (51)

We also define the scan vector

ŝ =

⎛
⎝cosψ

sinψ
0

⎞
⎠ . (52)

The scan center and scan vector together define a scan plane in space, which projects into a scan line in the

picture. Any vector x will lie in the scan plane if

(C× ŝ) · x = 0. (53)

A limb point p must therefore satisfy simultaneously the quadratic Eq. (47), the linear Eq. (50), and the
linear Eq. (53), with A+ p substituted for x in the last of these. The two linear equations define two planes;
their intersection is a line; the line intersects the ellipsoid in two points if C is properly chosen; the point with
p · ŝ > 0 is the preferred solution.

Note that Eqs. (47) and (50) are vector equations and therefore valid in any coordinate system, although

the components of Q given in Eq. (46) take this simple form only in body-fixed coordinates. We can express

these equations in any other coordinate system—in particular, camera coordinates—as follows.

Let T be the rotation matrix which transforms from body-fixed coordinates into camera coordinates:

T = CB
−1 = CB

T. (54)

Multiply each occurrence of p on the left-hand side of Eq. (47) by (TT
T), which is the identity matrix, and

rearrange terms:

(pB)T Q
B pB = ((TT

T)pB)T Q
B (TT

T)pB (55)

= (T pB)T (TQ
B

T
T) (TpB) (56)

= (pC)T Q
C pC = 1. (57)

Now the left-hand side is expressed in camera coordinates, and we have rotatedQ into camera coordinates as

well. The same transformation can also be applied to Eq. (50). As Eq. (53) was already specified in camera

coordinates, we now have three vector equations, all expressed in the same coordinate system, which can be

solved for p.

If the vector A be replaced by the direction to the sun, the same formulation yields the terminator, the set
of points which divide lit surface from unlit.

The above formulation is specific to triaxial ellipsoids, of which spheres and spheroids are special cases.

Small bodies in particular are not well modeled by ellipsoids. One approach is to determine a dense grid of

points on the surface and connect them with line segments to form a set of triangular plates. Another is to

represent the length of the radius vector r as an arbitrary function of body-centered latitude ϕ and longitude
λ, for instance as the sum of spherical harmonics:

r(λ, ϕ) =

N∑
n=0

n∑
m=0

Pnm(sin ϕ)(anm cosmλ + bnm sin mλ). (58)

Regardless of the shape model, the vector (A + p), from the camera to some spot on the surface of the
body, can be projected into the picture as for any other vector. Similarly, a point (s, l) in the picture can be
converted into a vector, and the intersection of that vector with the surface can be determined.
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The process of limb scanning proceeds as follows.

1) Begin with an assumed (sc, lc) of the center of the body. This yields the scan center vector C.

2) Determine a set of scan angles ψ based on the apparent size of the body. For each scan angle,

a) determine the limb or terminator point which lies in the scan plane for this scan angle. Not all scan angles

will necessarily give usable points. Terminator points and the unlit limb which lies beyond the terminator

may be discarded. The limb point will have some nominal (s, l) coordinates in the picture and a vector p in
space.

b) In the picture, determine (using bilinear interpolation or otherwise) the observed DN values along the

scan line: one at the nominal limb point, the rest equally spaced in pixels on either side of the nominal point.

The result is a one-dimensional array of observed DN.

c) Project each of these points onto the body if possible. For each point, determine the angle of incidence

i, the angle of emission e, and the phase angle φ. Use these angles, with the albedo of the surface at that point
and some appropriate reflectance law, to determine the expected brightness from the surface. The result is a

one-dimensional array of expected DN values, many of which will be zero.

d) Perform a one-dimensional correlation of the expected and observed DN values, which yields the offset

of the observed limb from the nominal limb at this scan angle.

3) After all the scan angles have been processed, the observed offsets go into a least-squares fit to solve for

(sc, lc) and perhaps parameters governing the shape of the body as well.

4) Iterate steps 2 and 3 until convergence is achieved.

Moment Algorithm

The most primitive of all the centerfinding methods is the moment algorithm, which simply determines the

center of brightness of an array:

sc =

∑
i

∑
j i DNi,j∑

i

∑
j DNi,j

; (59)

lc =

∑
i

∑
j j DNi,j∑

i

∑
j DNi,j

. (60)

This method must be used with care. The presence of a uniform nonzero background will cause (sc, lc) to
move toward the center of the DN array, so the backgroundmust be carefully removed. Noise spikes far from

the image will have a disproportionate effect on the results, so these must be removed as well. One quick

cure for these problems is to exclude from the sums all pixels whose DN value is less than some minimum

percentage of the brightest pixel in the image.

Manual Registration

When all else fails, the human eyes and the brain behind them remain a potent vehicle for determining

the center of an image. Missions from NEAR Shoemaker to Stardust have used opnav data based on manual

centerfinding.

PARTIAL DERIVATIVES

Image processing, described in the previous section, produces the observed coordinates (sc, lc) of images
of targets. These measurements must then be passed to an orbit determination filter, along with the radiomet-

ric tracking data and a priori constraints on the target ephemeris, so that the state of the spacecraft may be
estimated. The estimation process can also include corrections to the target ephemeris. We therefore require

residuals and partial derivatives in order to form the equations of condition for the optical data. The compu-

tation of the expected image coordinates follows exactly the same methods which were used to predict the
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coordinates initially, although usually using better values for the camera pointing angles. (It is customary for

the opnav analyst to estimate the pointing angles offline immediately after the centerfinding is complete.)

The partial derivatives (see References 16 and 17) may be found by differentiating Eqs. (1) through (18).

The parameters fall into several categories:

1) Dynamic parameters affect the spacecraft trajectory. These include the initial position and velocity of
the spacecraft; the position, velocity and mass of perturbing bodies; maneuvers; and other nongravitational

accelerations. The vectorsR(t) and Ṙ(t)will therefore have nonzero partials with respect to these parameters,
and the partials will propagate into τ , T(t), A(t), and then into sample and line.

2) Target parameters affect the position and velocity of the target. Orbital elements, masses, and for stars
the coordinates and proper motion, are examples. (Some of these may affect the spacecraft too.) These affect

S(t), and the partials propagate into τ , T(t), A(t) and (s, l) as above.

3) Optical parameters affect the transformation from A(t) into sample and line. They do not affect the
spacecraft trajectory, nor the target ephemeris. They do, however, affect the measurements. Examples include

the camera focal length f , the components of K, the distortion parameters, and the camera pointing angles
however defined.

4) Optical bias parameters are intended to soak up systematic errors in the centerfinding process. Typically

these are applied to body centers but not to stars.

Partials of Dynamic and Target Parameters

Let q denote some parameter which may affect R(t) or S(t − τ) and therefore A(t), the apparent position
of the target at the time of observation. The partials ∂R/∂q and ∂S/∂q may be interpolated from files or
calculated analytically; this paper assumes that their values are available somehow.

Begin by differentiating Eq. (2):

∂T
∂q

=
∂S(t − τ)

∂q
− ∂R(t)

∂q
− ∂S(t − τ)

∂(t − τ)

∂τ

∂q
. (61)

Because τ = |T| /c,
∂τ

∂q
=

1

c

∂|T|
∂q

=
1

c

(
T̂ · ∂T

∂q

)
. (62)

Once again we have the desired quantity, this time ∂T/∂q, on both sides of the equation. Now, however,
there is an exact solution:

∂T
∂q

=
∂S(t − τ)

∂q
− ∂R(t)

∂q
− Ṡ(t − τ)

c

Ṫ− ∂(S(t − τ) − R(t))/∂q

1 + (Ṡ · Ṫ)/c
. (63)

The next step is to differentiate Eq. (3):

∂A
∂q

=
∂T
∂q

+
Ṙ(t)

c

(
Ṫ · ∂T

∂q

)
+

|T|
c

∂Ṙ(t)

∂q
. (64)

The above partials are presumably calculated in inertial coordinates. They must then be rotated into camera

coordinates:
∂AC

∂q
= C

∂AI

∂q
+

∂CAI

∂q
. (65)

The dynamic parameters usually propagate only through the first term; the second term handles the various

pointing angles which define C.

Next, transform ∂AC/∂q into the focal plane:(
∂x/∂q
∂y/∂q

)
=

f

AC
3

(
∂AC

1 /∂q

∂AC
2 /∂q

)
− f

(AC
3 )2

(
AC

1

AC
2

)
∂AC

3

∂q
. (66)
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Then find the partials of the distortion corrections,⎛
⎜⎜⎝

∂Δx/∂x
∂Δx/∂y
∂Δy/∂x
∂Δy/∂y

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

r2 + 2x2 y 2x
2xy x 0
2xy 0 y

r2 + 2y2 2y x

⎞
⎟⎟⎠

⎛
⎝ε1

ε2
ε3

⎞
⎠ , (67)

and use these to get the partials with respect to any parameter via the chain rule:(
∂Δx/∂q
∂Δy/∂q

)
=

(
∂Δx/∂x ∂Δx/∂y
∂Δy/∂x ∂Δy/∂y

)(
∂x/∂q
∂y/∂q

)
. (68)

This gives the partials of the corrected position (x′, y′):(
∂x′/∂q
∂y′/∂q

)
=

(
∂x/∂q
∂y/∂q

)
+

(
∂Δx/∂q
∂Δy/∂q

)
. (69)

Finally, the partials of sample and line come from differentiating Eq. (18):(
∂s/∂q
∂l/∂q

)
= K

(
∂x′/∂q
∂y′/∂q

)
. (70)

Partials of Optical Parameters

These are found by differentiating the appropriate equations, this time with respect to the parameters which

appear explicitly in them.

For focal length f , (
∂x/∂f
∂y/∂f

)
=

1

AC
3

(
AC

1

AC
2

)
. (71)

These partials are then transformed into ∂(s, l)/∂f by Eqs. (68) through (70).

For the distortion coefficients, obviously

∂(x′, y′)

∂(ε1, ε2, ε3)
=

∂(Δx, Δy)

∂(ε1, ε2, ε3)
=

(
xr2 xy x2

yr2 y2 xy

)
, (72)

and again these are converted to sample and line via Eq. (70).

For the components of K,

∂(s, l)

∂(Kx, Kyx, Kxy, Ky)
=

(
x′ 0 y′ 0
0 x′ 0 y′

)
(73)

with no further transformation required.

Partials with respect to (s0, l0) are trivial, but these parameters are seldom estimated. Rather, it is conve-
nient to hold them fixed at the center of the detector. If the actual location of the optical axis differs from this,

the distortion terms ε2 and ε3 can soak up the difference.

Partials with respect to pointing angles are found by differentiating the matrix C with respect to these

angles. These partials enter into the second term on the right-hand side of Eq. (65).

Partials of Optical Bias Parameters

We have seen above that it can be a difficult task to determine the image coordinates of the center of a body.

Limb scanning results can be affected by scattered light, by an incorrect reflectance law, or by a mismodeling

of the body’s shape. For instance, if a body is more oblate than the model, the equator will be further than
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expected from the body’s rotational axis, and fitting the wrong shape for the limb will pull the inferred center

away from the spin axis. Errors in the reflectance law can easily produce an error in the sunward direction.

Comets pose a special problem, because the nucleus is far smaller than the observable coma, and the coma

itself is likely to have a sunward bias. For these reasons it is convenient and sometimes necessary to introduce

optical bias parameters.

There are typically three kinds of optical bias.

1) A constant bias in camera coordinates may arise from a frame-tie error or other problems with the star

catalog. There are two such parameters, bs and bl, one in sample and one in line. Obviously ∂s/∂bs = 1 and
∂l/∂bl = 1, and the cross partials are zero. These partials are zero, by definition, for stars.

2) A bias proportional to the apparent diameter of the body may arise from systematic topography varia-

tions or other physical effects. This effect is really measured in kilometers, not in pixels. If the diameter of

the target body isD, the partials are FKxD/|T| in the sample direction and FKyD/|T| in the line direction.
3) A bias like 2) but acting in the sunward direction, with a magnitude depending somehow on the phase

angle. One determines the direction to the sun in the image and sets up a partial in that direction. Often the

phase dependence can be expressed as a power of sin(φ/2).

These biases are most useful in covariance studies, but they can also be used to force the optical residuals

to lie flat.

CONCLUSION

Space limitations prevent this paper from being a full treatise on the mathematical methods of optical

navigation. The uses of optical navigation are diverse, as it deals with targets ranging in size from centimeters

to thousands of kilometers; with cameras whose field of view can vary over an order of magnitude; with all

kinds of detectors, with cameras on spacecraft or telescopes in observatories. The same underlying geometry

applies to everything, but the methods of extracting positional information from pictures vary widely from

case to case. What is presented here is therefore more of a primer, an appetizer, an invitation to the readers

to work through the equations for themselves, to find new ways of coaxing navigation information out of

pictures.
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